Commissione internazionale per la protezione delle acque italo-svizzere

PROGRAMMA 2019-2021

RAPPORTO ANNUALE 2021

LAGO DI LUGANO: INDAGINE SULLE SOSTANZE PERICOLOSE MICROINQUINANTI NELLE ACQUE DEL LAGO

a cura di Nicola Solcà

Bellinzona, 2022

Commissione internazionale per la protezione delle acque italo-svizzere

Lago di Lugano:

Indagine sulle sostanze pericolose Microinquinanti nelle acque del lago

Programma 2019-2021

Rapporto annuale 2021

a cura di Nicola Solcà

Bellinzona 2022

I dati riportati nel seguente rapporto possono essere utilizzati purché se ne citi la fonte come segue:

N. Solcà, F. Danza, C. Capelli, A. Pessina, G. Ranieri. 2022. Lago di Lugano: Indagine sulle sostanze pericolose Microinquinanti nelle acque del lago. Campagna 2021. Programma triennale 2019-2021. Commissione Internazionale delle Acque Italo-Svizzere (Ed.); 35 pp

Indice

Riassunto	5
Summary	
1. Introduzione	7
2. Punti e modalità di prelievo	9
3. Parametri considerati, gestione dei campioni e analiti	ca10
4. Risultati e discussione	
4.1 Caratteristiche delle acque lacustri	14
4.2 Microinquinanti	14
4.3 Qualità delle acque del lago e rischio per gli orga	nnismi19
5. Conclusioni	23
6. Bibliografia	24
Appendice	26

Riassunto

Questo rapporto riassume le attività del terzo anno del triennio di indagini 2019-2021 sulle sostanze pericolose nell'ecosistema del Lago Ceresio.

L'obiettivo principale del 2021 è stato rivolto alla quantificazione di microinquinanti idrosolubili nelle acque del Lago Ceresio. Il programma prevedeva il prelievo di due campioni di acqua a diverse profondità (specificatamente nella colonna d'acqua tra 0-20 metri, e a 50 metri), in quattro zone del lago (Bacino Nord, Bacino di Ponte Tresa, Melide, Figino), e in quattro periodi dell'anno (marzo, giugno, settembre, dicembre 2021). La parametrizzazione è stata adattata alle conoscenze acquisite nei precedenti anni di indagini della CIPAIS sul tema (2014, 2017), con il mantenimento di diversi analiti (Benzotriazoli, Complessanti, Farmaci, Dolcificanti) allo scopo di verificarne l'evoluzione nel tempo, e l'introduzione di nuove sostanze non ancora o solo parzialmente studiate, come le sostanze per- e polifluoroalchiliche (PFAS). Il principio di misura con estrazione in fase solida e analisi per HPLC-MSMS ha permesso di quantificare per la maggior parte dei parametri gli inquinanti con limiti di rivelazione di 10 ng/L o inferiori.

A livello generale, i risultati delle analisi confermano quanto già evidenziato nelle campagne precedenti, con un gradiente crescente nella concentrazione di microinquinanti lungo l'asse di deflusso del lago Ceresio da est verso ovest, mostrando invece una dipendenza limitata in funzione del periodo e dalla profondità di prelievo. Tra le cinque categorie investigate, i complessanti e i farmaci sono stati rivelati in concentrazioni più elevate. Rispetto alle campagne passate CIPAIS sui microinquinanti del Lago Lugano, proprio la concentrazione del complessante EDTA e di diversi farmaci appaiono in diminuzione, suggerendo delle ricadute positive sull'abbattimento di microinquinanti dovuti ai miglioramenti realizzati negli scorsi anni per la depurazione delle acque reflue scaricate nel bacino Sud. Considerando i valori standard di qualità ambientale (AA-EQS) attualmente in vigore, la principale criticità riscontrata nel lago di Lugano è riconducibile alla molecola di PFOS, composto della famiglia delle sostanze perfluoroalchiliche, a causa del quale il giudizio di qualità delle acque a Ponte Tresa, Figino e Melide è risultato mediocre (campagna 2021).

Summary

This report summarizes the activities of the third year of the three-year 2019-2021 investigation of hazardous substances in Lake Ceresio.

The main goal for CIPAIS 2021 campaign aimed at quantifying water-soluble micropollutants in the waters of Lake Ceresio. The program involved taking two water samples depths (specifically in the water column between 0-20 meters and 50 meters), in four areas of the lake (Bacino Nord, Bacino di Ponte Tresa, Melide, Figino), at four times of the year (March, June, September, December 2021). The parametrization was adapted to the knowledge acquired in the previous CIPAIS investigation on the topic (2014, 2017) with the maintenance of several analytes (Benzotriazoles, Complexants, Pharmaceuticals, Sweeteners) in order to verify their evolution over time, and the introduction of new substances not yet or only partially investigated, such as per- and polyfluoroalkyl substances (PFAS). Solid-phase extraction and analysis by HPLC-MSMS allowed quantification for most pollutants with detection limits of 10 ng/L or lower.

The results of the present campaign confirm what showed in previous campaigns, with an increasing gradient in the concentration of micropollutants along the lake outflow axis from east to west, showing instead a limited dependence as a function of sampling period and sampling depth. Among the five categories investigated, complexants and pharmaceuticals revealed in higher concentrations. However, compared to past campaigns, the concentrations of the complexant EDTA and several pharmaceuticals are decreasing. This result suggests possible micropollutant abatement due to the improvements made in the past years for the purification of wastewater discharged in the South Basin. Considering the environmental quality standard values (AA-EQS) currently in force, main only critical value found in Lake Lugano can be attributed to the PFOS molecule, a compound of the perfluoroalkyl family of substances, due to which the water quality rating in Ponte Tresa, Figino and Melide resulted mediocre (2021 campaign).

Microinquinanti nelle acque del Lago di Lugano

(Nicola Solcà¹, Francesco Danza¹, Camilla Capelli², Antonio Pessina¹, Giuseppe Ranieri¹)

- 1 Sezione della protezione dell'aria, dell'acqua e del suolo, Bellinzona
- 2 Scuola universitaria professionale della svizzera italiana, DACD, IST, Mendrisio

1. Introduzione

Nei paesi industrializzati vengono utilizzati giornalmente decine di migliaia di preparati chimici diversi. In Svizzera viene stimato l'utilizzo giornaliero di oltre 30'000 sostanze che trovano impiego in applicazioni industriali, artigianali e domestiche, come prodotti fitosanitari, biocidi, farmaci o componenti di beni di consumo. Anche basse concentrazioni di queste sostanze possono però causare effetti indesiderati all'ambiente e all'ecosistema. Pertanto, la problematica dei microinquinanti e il loro impatto sull'ecosistema è di estrema attualità, rappresentando una sfida importante per gli anni a venire. Un monitoraggio attento e costante nel tempo permette di evidenziare le dinamiche ed i flussi di sostanze nell'ambiente, utili per identificare le azioni più opportune ed efficaci a mitigare la dispersione nel suolo, nei sedimenti e nelle acque. Particolare attenzione viene proprio rivolta alla presenza di microinguinanti nei compartimenti acquatici al fine di proteggere le acque dagli effetti avversi che queste sostanze possono arrecare agli organismi acquatici - fondamentali nella catena trofica - anche in basse concentrazioni. A questo scopo vengono regolarmente aggiornate le valutazioni ecotossicologiche del caso, necessarie per completare la valutazione del rischio e proporre delle concentrazioni massime a tutela della qualità delle acque e del biota (Oekotoxzentrum, 2022). In Europa e poi in Italia, i risultati di valutazioni del tutto analoghe hanno portato a stabilire gli standard di qualità ambientale SQA definiti dalla Direttiva 2013/39/UE e dal Decreto legislativo 172/2015.

L'approccio in corso per contenere la diffusione di microinquinanti è funzionale alle fonti e ai meccanismi di emissione di queste sostanze, che possono essere molteplici. Si differenzia innanzi tutto tra fonti puntuali e fonti diffuse. Le fonti puntuali sono caratterizzate da un'emissione ambientale localizzata, come è il caso per esempio degli scarichi degli impianti di depurazione delle acque reflue (IDA). Gli effluenti degli IDA possono infatti contenere tracce di sostanze che non vengono completamente trattenute dagli impianti e possono essere rilevati nelle acque superficiali (fiumi e laghi) anche in concentrazioni molto ridotte (Wittmer et al., 2014 a; CIPAIS, 2018). Le fonti diffuse, invece, non sono di facile identificazione, e possono comprendere l'impiego di fitosanitari in agricoltura o l'uso di biocidi in ambito urbano. La dispersione nell'ambiente può avvenire, ad esempio, per deriva al momento dell'impiego così come a seguito del dilavamento di particolato contaminato seguente a forti precipitazioni (Wittmer et al., 2014 b; Spycher et al., 2018). In considerazione delle fonti differenziate, sono in corso diversi programmi di mitigazione, che dovranno portare nei prossimi anni a una chiara riduzione della presenza di microinquinanti problematici nelle acque. Grazie a una modifica della legislazione federale sulla protezione delle acque sono state gettate le basi per potenziare, in rapporto alla capacità di trattenere i microinquinanti, qli IDA grandi e quelli che scaricano in acque particolarmente sensibili. Tale potenziamento è reso possibile dalla raccolta di una tassa sulle acque di scarico, proporzionale agli scarichi prodotti, che resterà in vigore fino al 2040 (LPAc, 2017). Il potenziamento riguarderà principalmente l'aggiunta di tecnologie idonee per contrastare molti microinquinanti l'ozonizzazione, che agisce favorendo reazioni di ossidazione con le sostanze indesiderate, e/o la filtrazione grazie al passaggio delle acque inquinate attraverso degli appositi filtri a carbone attivo. Questo sviluppo, entro il 2040, riguarderà circa 135 IDA in Svizzera.

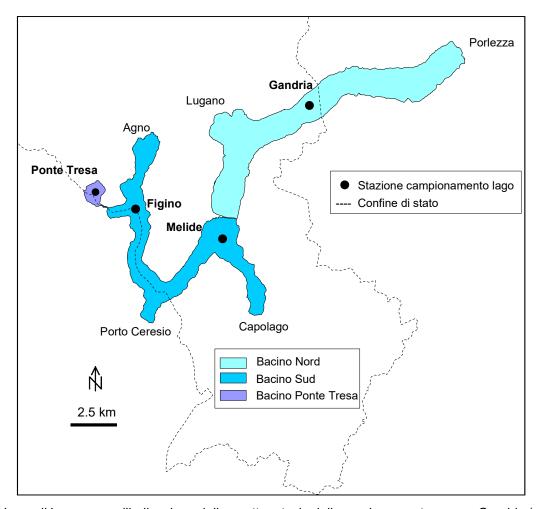
Parallelamente, per ridurre la contaminazione di microinquinanti da fonte diffuse, vengono sviluppati specifici piani d'azione. Un esempio riguarda il Piano d'azione per la riduzione del rischio e l'utilizzo

sostenibile dei prodotti fitosanitari (Consiglio Federale, 2017), che mira tra le altre cose a dimezzare il rischio residuo di questi prodotti nelle acque superficiali entro il 2027. Il piano prevede la graduale implementazione di una cinquantina di misure specifiche, che spaziano dalla sensibilizzazione a misure di incentivo fino a più stringenti procedure di omologazione o altre misure legislative. Infine, diversamente dal passato, anche l'immissione sul mercato di prodotti chimici in generale viene sottoposta a valutazioni più accurate, favorendo un migliore contenimento alla fonte.

Sulla scorta di queste osservazioni, il piano di ricerca CIPAIS ha lo scopo di monitorare l'evoluzione dei microinquinanti nel Lago Lugano. La presenza di microinquinanti organici nelle acque è già stata oggetto delle attenzioni della CIPAIS negli scorsi anni (CIPAIS 2014; CIPAIS 2015; CIPAIS 2018).

In ragione della sua particolare struttura morfologica, il Lago di Lugano risulta suddiviso in tre sottobacini. Il maggior carico di microinquinanti è osservato nelle acque del bacino di Ponte Tresa e del bacino Sud, sul quale gravano tramite l'IDA di Bioggio e il fiume Vedeggio le acque reflue della città di Lugano. Nel bacino sud sono pure convogliate le acque depurate dagli impianti consortili di Barbengo e di Rancate.

Accanto alla ricerca di diverse sostanze già ricercate in passato (come diversi Farmaci, Complessanti, Benzotriazoli e Dolcificanti), volta a monitorarne l'evoluzione temporale, nella presente campagna sono stati inclusi anche i composti perfluoroalchilici (PFAS), delle molecole di sintesi con una catena alchilica perfluorurata e dei gruppi funzionali periferici – spesso idrofili – che ne determinano le caratteristiche delle varietà principali. Grazie alle loro proprietà fisico-chimiche uniche, come la notevole stabilità dei legami C-F, la resistenza alle temperature, agli acidi e ai processi di degradazione in generale così come alle caratteristiche idrofobe e oleorepellenti, i PFAS hanno trovato negli ultimi 50 anni ampio utilizzo sia nell'industria che all'interno dei beni di consumo (Buser e Morf, 2009; Buck et al., 2011). Per queste sostanze, oltre ai livelli di fondo nell'ambiente, concentrazioni elevate possono essere misurate nei paraggi di attività industriali che impiegano o impiegavano PFAS (Houde et al. 2011). Accanto a fonti dirette, oggi limitate, la principale via di diffusione di PFOS e PFOA nell'ambiente può avvenire attraverso gli IDA. Se da un lato gli IDA hanno una capacità limitata nel trattenere queste sostanze, d'altra parte PFOS e PFOA possono venire prodotti dagli stessi IDA a seguito di processi, non del tutto compresi, di conversione da precursori come i sulfonammidi e i fluorotelomeri (Sun H. et al. 2011; Buser e Morf 2009). Accanto ad altre fonti, gli IDA possono pertanto fungere da fonte puntuale di PFAS negli ambienti acquatici. Una volta rilasciati nelle acque superficiali, oltre a confluire nei laghi, dei residui possono infiltrarsi profondamente e contaminare le acque sotterranee (Reinhardt, 2010). Negli unici studi effettuati a sud delle alpi sono state rivelate, nei principali laghi italo-svizzeri, concentrazioni di ca. 8 ng/l di PFOS e 2 ng/l di PFOA (Loos et al., 2007) rispettivamente <2 - 3 ng/l PFOS e <2 - 2 ng/l di PFOA (Schildknecht et al. 2009). Queste concentrazioni sono simili a quelle rinvenute nel Bodensee nel corso di un'altra campagna di monitoraggio delle acque internazionali (IGKB 2020).


Oltre a ricercare e quantificare l'eventuale presenza di sostanze organiche poco ricercate, la campagna attuale vuole anche valutare l'impatto e l'efficacia delle modifiche e delle migliorie apportate fino ad oggi ai sistemi di depurazione delle acque luride. Nel corso degli scorsi anni sono stati infatti dismessi due IDA. A fine gennaio 2017 è stato dismesso l'IDA di Cadro (CIPAIS 2018); le acque dell'ex Consorzio depurazione acque Medio Cassarate sono ora depurate presso l'IDA di Bioggio, con un notevole alleggerimento del carico di inquinanti nel fiume Cassarate. A dicembre 2021 è invece stato dismesso l'IDA di Morcote. Le acque del Comune di Morcote sono convogliate tramite una condotta a lago verso l'IDA di Barbengo. In entrambi i casi le acque sono trattate in impianti più performanti, che in futuro saranno dotati di stadi a carbone attivo per la rimozione dei microinquinanti organici. Per verificarne l'idoneità e la possibilità di adattare l'impianto di depurazione di Barbengo, da giugno a novembre 2021 sono stati effettuati dei test con un impianto pilota. I test hanno fornito dati importanti per la progettazione e nel contempo hanno permesso di ridurre i carichi

di microinquinanti scaricati nel fiume Scairolo e nel Lago di Lugano. Questi test verranno continuati anche nel 2022. La linea acque dell'IDA di Bioggio verrà completamente rinnovata e potenziata sia in termini di capacità di trattamento sia con l'inserimento di un nuovo stadio di trattamento a carboni attivi. Il progetto è in corso di approvazione presso le autorità cantonali e federali.

L'obiettivo dello studio sarà quello di proseguire il monitoraggio in diversi punti di prelievo del Lago Lugano così da estendere e proseguire il monitoraggio, fornendo di fatto l'evoluzione temporale delle sostanze nei diversi bacini.

2. Punti e modalità di prelievo

Nel Lago di Lugano i campionamenti sono stati eseguiti stagionalmente (marzo, giugno, settembre, dicembre) nella zona pelagica nel bacino nord, stazione di Gandria, nel bacino sud, stazioni di Melide e Figino, e nel bacino di Ponte Tresa (Figura 1). Per ogni campionamento sono stati prelevati due campioni d'acque (2.5 L): il primo rappresentativo della zona eufotica (integrato 0-20 metri con al bottiglia di Schröder), e il secondo rappresentativo dell'ipolimnio (50 metri presso Gandria, Melide, Figino; 40 metri presso Ponte Tresa, con bottiglia di Niskin). A causa di problemi tecnici durante il campionamento di settembre, il campione della zona eufotica è stato composto da volumi equivalenti di 5 campioni discreti raccolti alla profondità di 0, 5, 10, 15 e 20 metri con bottiglia Niskin.

Figura 1 Lago di Lugano con l'indicazione delle quattro stazioni di campionamento presso Gandria (profondità massima 288 metri), Melide (profondità massima 85 metri), Figino (profondità massima 95 metri) e Ponte Tresa (profondità massima 50 metri) nonché dei tre sottobacini (Nord, Sud, Ponte Tresa).

3. Parametri considerati, gestione dei campioni e analitica

Unitamente alla raccolta dei campioni d'acqua, sono stati rilevati i parametri chimico-fisici (temperatura, pH, conducibilità elettrica e ossigeno disciolto) lungo l'intera colonna d'acqua tramite sonda multiparametrica (Ocean Seven 304 e 316 Plus CTD Idronaut). A causa di problemi tecnici, i valori di ossigeno nel mese di settembre non sono stati misurati.

I campioni d'acqua raccolti in apposite bottiglie di vetro scuro sono stati stoccati a 4°C e trasportati successivamente nelle stesse condizioni per la consegna all'istituto incaricato delle analisi dei microinquinanti, il *Technologie Zentrum Wasser* (TZW) di Karlsruhe (Germania). Il programma analitico ha previsto l'indagine di 76 sostanze microinquinanti (Tabella 1) che è possibile suddividere per classe di appartenenza come seque:

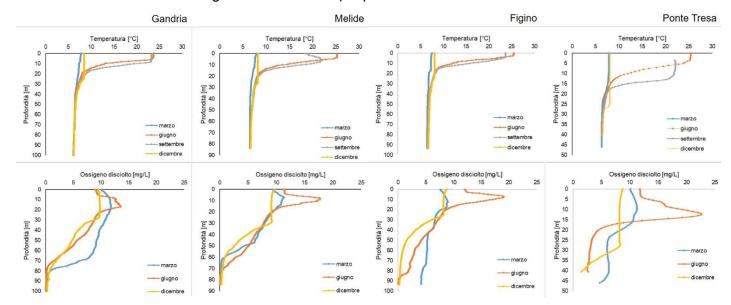
- Benzotriazoli (Bz, 3 sostanze)
- Complessanti (Co, 6 sostanze)
- Farmaci (Fa, 43 sostanze)
- PFAS (20 sostanze)
- Dolcificanti (Do, 4 sostanze)

La tabella seguente riporta i prodotti di uso corrente nei quali sono rinvenute le sostanze ricercate in questa campagna.

<u>Tabella 1:</u> Lista delle 76 sostanze ricercate, divise per categoria – Bz: Benzotriazoli, Co: Complessanti, Fa: Farmaci, PFAS, Do: Dolcificanti. Sono inoltre riportati per ogni sostanza le classi di appartenenza e i principali campi di applicazione

Cat.	Sostanza	Classe	Applicazioni
Bz	Benzotriazol (Benzotriazolo)	Anti-corrosivo	Protezione di metalli (in particolare rame e sue leghe), prodotti chimici di uso domestico
Bz	4-Methylbenzotriazol (4-Metilbenzotriazolo)	Anti-corrosivo	Protezione di metalli (in particolare rame e sue leghe), prodotti chimici di uso domestico
Bz	5-Methylbenzotriazol (5-Metilbenzotriazolo)	Anti-corrosivo	Protezione di metalli (in particolare rame e sue leghe), prodotti chimici di uso domestico
Со	NTA	Legante tetradentato	Complessazione degli ioni calcio(II), rame(II) e ferro(III)
Со	EDTA	Legante esadentato	Complessazione degli ioni dei metalli pesanti, di Ca(II) e di Mg(II)
Со	DTPA	Legante ottadentato	Agente chelante nei prodotti cosmetici, complessante di diversi ioni specifici per applicazioni particolari.
Со	PDTA	Legante esadentato	Agente chelante dagli svariati utilizzi
Со	ADA	Legante pentadentato	Agente chelante presente nei cosmetici, nei detergenti, nella polpa di cellulosa (produzione di carta) ed utilizzato nell'addolcimento delle acque e in galvanostegia.
Co	MGDA	Legante pentadentato	Agente chelante presente nei cosmetici, nei detergenti, nella polpa di cellulosa (produzione di carta) ed utilizzato nell'addolcimento delle acque e in galvanostegia
Fa	10,11-Diidro-10,11- diidrossicarbamazepina	Antiepilettico (metabolita della Oxcarbazepina)	Trattamento dell'epilessia e del disturbo bipolare
Fa	Acido diatrizoico	Mezzo di contrasto iodurato	Esami radiologici dei tratti urinario e gastrointestinale

Fa	lohexol (loexolo)	Mezzo di contrasto iodurato	Utilizzato in angiografia, flebografia, urografia, splenoportografia, isterosalpingografia, artrografia, mielografia e visualizzazione del tratto gastrointestinale
Fa	lomeprol (lomeprolo)	Mezzo di contrasto iodurato	Usato in urografia, flebografia, tomografia computerizzata, cavernosografia, angiografia, artrografia, scialografia, mielografia, galattografia e colangiografia
Fa	lopamidol (lopamidolo)	Mezzo di contrasto iodurato	Trova utilizzo in angiografia, urografia, tomografia computerizzata
Fa	lopromid (lopromide)	Mezzo di contrasto iodurato	Trova utilizzo in angiografia, urografia, tomografia computerizzata
Fa	lotalaminsäure (Acido iotalamico)	Mezzo di contrasto iodurato	Utilizzato in urografia endovenosa, angiografia cerebrale, arteriografia periferica e flebografia, colangiografia intraoperatoria, T.A.C.
Fa	loxaglinsäure (Acido iossaglico)	Mezzo di contrasto iodurato	Angiografia, flebografia, urografia
Fa	loxithalaminsäure (Acido iossitalamico)	Mezzo di contrasto iodurato	Esami radiologici del tratto gastrointestinale
Fa	Cetrizin (Cetrizina)	Antistaminico	Trattamento delle allergie
Fa	Gabapentin	Antiepilettico	Dolori neuropatici, nevralgie posterpetiche, epilessia
Fa	Hydrochlorothiazid (Idroclorotiazide)	Diuretico	Trattamento di insufficienza cardiaca, di insufficienza renale, di cerrrosi epatica e di ipercalciuria
Fa	Lamotrigin (Lamotrigina)	Antiepilettico	Trattamento dell'epilessia e del disturbo bipolare
Fa	Oxazepam	Psicofarmaco	Nel trattamento del disturbo d'ansia, dell'insonnia e della crisi di astinenza da alcool
Fa	Primidon (Primidone)	Antiepilettico e anticovulsionante	Nel trattamento dell'epilessia e del tremore essenziale
Fa	Benzafibrat (Benzafibrato)	Ipolipidemizzante fibrato	Utilizzato nella cura dell'iperlipidemia combinata
Fa	Clofibrinsäure (Acido clofibrico)	Ipolipidemizzante fibrato	Riduce i livelli plasmatici elevati di trigliceridi
Fa	Etofibrat (Etofibrato)	Ipolipidemizzante fibrato	Nella cura del livello alto di colesterolo
Fa	Fenofibrat (Fenofibrato)	Ipolipidemizzante fibrato	Riduce i livelli plasmatici elevati di trigliceridi
Fa	Fenofibrinsäure (Acido fenofibrico)	Ipolipidemizzante fibrato	Riduce i livelli di lipidi nel sangue
Fa	Fenoprofen (Fenoprofene)	Anti-infiammatorio non steroideo	Nel trattamento di dolori moderati (mal di denti, dolori mestruali, artrosi, etc.)
Fa	Gemfibrozil	Ipolipidemizzante fibrato	Per la cura della ipertrigliceridemia
Fa	Indomethacin (Indometacina)	Anti-infiammatorio non steroideo	Nella cura delle patologie infiammatorie croniche dolorose (artrosi, artrite reumatoide)
Fa	Azithromycin (Azitromicina)	Antibiotici macrolidi	Cura di gastroenteriti, febbre tifoide, bronchiti e sinusiti
Fa	Carbamazepin (Carbamazepina)	Dibenzazepine	Utilizzo nei casi di epilessia e disturbo bipolare
Fa	Clarithromycin (Claritromicina)	Antibiotici macrolidi	Cura di infezioni respiratorie, della pelle e della malattia di Lyme. Anche contro l' <i>Helicobacter pylori</i> .


Fa	Dehydrato-Erythromycin A	Antibiotici macrolidi	Utilizzo a vasto spettro d'azione, in particolare nella cura dei
	(Eritromicina A deidrato)		processi infettivi a carico delle vie aeree, della cute e dei tessuti molli
Fa	Diazepam	Benzodiazepine	Utilizzo nei casi di ansia, attacchi di panico, insonnia e depressione
Fa	Diclofenac	Anti-infiammatori non steroidei	Contro dolori e febbre
Fa	Ibuprofen (Ibuprofene)	Anti-infiammatori non steroidei	Contro dolori e febbre
Fa	Ketoprofen (Ketoprofene)	Anti-infiammatori non steroidei	Contro dolori e febbre
Fa	Naproxen (Naproxene)	Anti-infiammatori non steroidei	Contro dolori e febbre
Fa	Paracetamol (Paracetamolo)	Analgesici non oppioidi	Contro dolori e febbre
Fa	Pentoxifyllin (Pentossifillina)	Derivati xantinici	Cura della claudicatio intermittens
Fa	Roxithromycin (Roxitromicina)	Antibiotici macrolidi	Cura delle affezioni respiratorie, broncopolmonari, otorinolaringoiatriche, cutanee e genitali
Fa	Sulfadiazin (Sulfadiazina)	Antibiotici sulfamidici	Utilizzo in caso di febbre reumatica e toxoplasmosi
Fa	Sulfadimidin (Sulfadimidina)	Antibiotici sulfamidici	n/a (principio attivo degli antibiotici sulfamidici)
Fa	Sulfamerazin (Sulfamerazina)	Antibiotici sulfamidici	Utilizzo in medicina veterinaria
Fa	Sulfamethoxazol (Sulfametossazolo)	Antibiotici sulfamidici	Cura delle infezioni delle vie urinarie
Fa	Sulfapyridin (Sulfapiridina)	Antibiotici sulfamidici	Cura delle infezioni dermatologiche
Fa	Trimethoprim (Trimetoprim)	Antibiotici batteriostatici	Utilizzo nel caso di infezioni delle vie urinarie
Fa	Metformin (Metformina)	Antidiabetici biguanidi	Cura del diabete di tipo 2
Fa	Guanyharnstoff (Guanilurea)	Antidiabetici biguanidi	Principale prodotto di degradazione della Metformina
Do	Sucralose (Sucralosio)	Edulcorante artificiale	Utilizzo nei dolci da forno e nei prodotti lunga conservazione
Do	Acesulfam (Acesulfame)	Edulcorante artificiale	Utilizzo nei dolci da forno, nelle bibite gassate e nei prodotti a lunga conservazione
Do	Cyclamat (Ciclamato)	Edulcorante artificiale	Utilizzo negli sciroppi e nei prodotti per diabetici
Do	Saccharin (Saccarina)	Edulcorante artificiale	Utilizzo con possibili applicazioni molto diversificate
PFAS	Perfluorobutanoato (PFBA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. Prodotto di degradazione di altri PFAS usati in tessuti antimacchia, imballaggi alimentari di carta e tappeti. Produzione di pellicole fotografiche
PFAS	Perfluoropentanoato (PFPeA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. Utilizzato come agente protettivo di superfici
PFAS	Perfluoroesanoato (PFHxA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. In passato usato nella produzione di Teflon
PFAS	Perfluoroeptanoato (PFHpA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. Prodotto di degradazione dei rivestimenti antimacchia e antigrasso di imballaggi alimentari, divani e tappeti
PFAS	Perfluoroottanoato (PFOA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. In passato usato come rivestimento impermeabilizzante per tessuti, pellame, carta e nella cera per pavimenti; inoltre utilizzato come schiuma negli estintori

			e per l'impermeabilizzazione dell'abbigliamento sportivo
			(Nomex, Gore-tex)
PFAS	Perfluorononanoato (PFNA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. Utilizzato nella produzione della sostanza plastica fluoruro di polivinilidene (PVDF)
PFAS	Perfluorodecanoato (PFDA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale. Utilizzato come agente umettante e ritardante di fiamma, inibitore di corrosione
PFAS	Perfluoroundecanoato (PFUnA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale.
PFAS	Perfluorododecanoato (PFDoA)	Acidi carbossilici perfluoroalchilici (PFCA)	Tensioattivo industriale.
PFAS	Perfluorobutansulfonato (PFBS)	Acidi solfonici	Utilizzato come sostituto del PFOS in prodotti 3M
		perfluoroalchilici (PFSA)	
PFAS	Perfluorpentansolfonato (PFPeS)	Acidi solfonici	Materia prima per surfattanti e rivestimenti per superfici
		perfluoroalchilici (PFSA)	
PFAS	Perfluoroesansolfonato (PFHxS)	Acidi solfonici	Usato come tensioattivo e rivestimento protettivo in
		perfluoroalchilici (PFSA)	applicazioni quali schiume antincendio acquose, come rivestimento tessile, nella placcatura dei metalli e negli agenti lucidanti
PFAS	Perfluoroeptansolfonato (PFHpS)	Acidi solfonici	Materia prima per surfattanti, rivestimenti per superfici e ritardanti di fiamma
		perfluoroalchilici (PFSA)	maruanu di namma
PFAS	Perfluoroottansolfonato (PFOS)	Acidi solfonici	Utilizzato in galvanostegia, in fotografia, nell'industria dei semiconduttori, in schiume antincendio e in fluidi idraulici per
		perfluoroalchilici (PFSA)	l'industria aerospaziale. In passato usato come ingrediente chiave di vari prodotti antimacchia e idrorepellenti per tessuti, tra i quali lo Scotchgard
PFAS	Perfluorodecansolfonato (PFDS)	Acidi solfonici	Materia prima per surfattanti e rivestimenti per superfici
		perfluoroalchilici (PFSA)	
PFAS	Perfluoroottansolfonammide (PFOSA)	Solfonammidi	Utilizzato nell'industria fotografica, in applicazioni mediche e
		perfluoroalchiliche (FASA)	pesticidi. In passato usato come idro- e grasso-repellente negli imballaggi alimentari. La sua degradazione forma PFOS.
PFAS	7H-Dodecafluoroeptanoato (HPFHpA)	Acidi carbossilici polifluoroalchilici	Derivato del PFHpA
PFAS	8:2 Fluorotelomercarbossilato (8:2 FTCA) o 2H,2H-Perfluorodecanoato (H2PFDA)	Acidi carbossilici fluorotelomeri (FTCA)	Tensioattivo industriale. Possibile sostituto del PFDA
PFAS	8:3 Fluorotelomercarbossilato (8:3 FTCA) o 2H,2H,3H,3H- Perfluoroundecanoato (H4PFUnA)	Acidi carbossilici fluorotelomerici (FTCA)	Tensioattivo industriale. Possibile sostituto del PFUnA
PFAS	6:2 Fluorotelomersolfonato (6:2 FTS)	Acidi solfonici	Possibile sostituto del PFOS, nelle schiume antincendio e nell'industria galvanica
	o 1H,1H,2H,2H-	fluorotelomerici	non maasina garvanica
	Perfluoroottansolfonato (H4PFOS)	(FTSA)	
L	1	l .	

4. Risultati e discussione

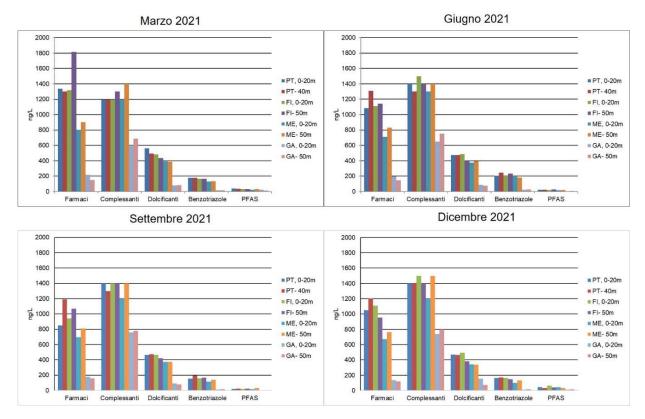
4.1 Caratteristiche delle acque lacustri

Le caratteristiche chimico-fisiche della colonna d'acqua lacustre nelle quattro stazioni e nei differenti momenti di prelievo sono illustrate, utilizzando i profili della temperatura e dell'ossigeno disciolto, nella Figura 2. I profili mostrano una dinamica tipica della zona pelagica in tutti i bacini nel corso dell'anno: fasi finali della circolazione invernale (marzo), stratificazione stabile estiva (giugno – settembre), e inizio della circolazione invernale (dicembre). I dati mostrano come nel 2021 ci sia stata una circolazione nella norma, ad eccezione di Melide, in cui la circolazione debole ha determinato una scarsa ossigenazione delle acque profonde.

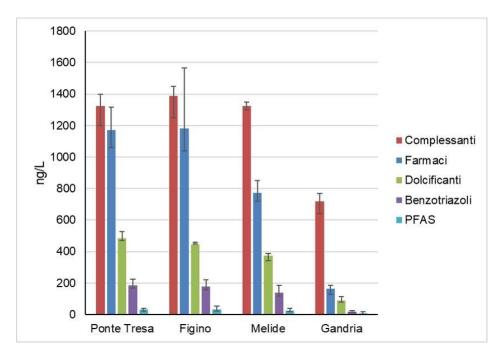
Figura 2 Temperatura e tenore di ossigeno disciolto ottenuti con sonda multiparametrica in funzione della profondità dalle quattro stazioni di campionamento e nei quattro momenti di prelievo del 2021.

4.2 Microinquinanti

La Tabella 4 in allegato elenca tutte le sostanze analizzate in questa campagna, in totale 76, nei 32 campioni considerati, indicando la loro categoria di appartenenza e il limite di quantificazione analitico. Le sostanze rappresentate in grassetto corrispondono a quelle per cui almeno una volta la concentrazione è risultata maggiore al limite di rivelazione (34 sostanze), corrispondente al 45% delle sostanze totali.


Le Tabelle 5-8 in allegato riassumono tutti i risultati ottenuti considerando esclusivamente i parametri per cui almeno una volta la concentrazione è risultata superiore al limite di rivelazione. In modo simile a quanto osservato nella campagna del 2017, il maggior numero di sostanze in un singolo campione, 30, è stato registrato per l'acqua prelevata dalla colonna d'acqua superficiale di Figino (bacino sud) nella stagione invernale (mese di marzo). Inoltre, come già osservato nel 2017, solo un minimo di 8 e un massimo di 12 sostanze sono state rilevate nelle acque raccolte dalla stazione di Gandria (bacino nord). La Figura 3 mostra i risultati per i quattro momenti di prelievo e relativi alla colonna d'acqua superficiale rispettivamente al campione di profondità. Il confronto visivo è formato dalla somma delle sostanze appartenenti a una determinata categoria – Farmaci, Complessanti, Dolcificanti, Benzotriazoli, PFAS. Analogamente a quanto già osservato nella campagna del 2017, i risultati delle diverse stazioni di prelievo appaiono comparabili durante il corso dell'anno, con maggiori differenze in funzione del luogo di prelievo dei campioni. A riprova di ciò, il grafico in Figura 4 mostra il gradiente crescente di contaminazione per le diverse classi di microinguinanti lungo l'asse

di deflusso delle acque da est a ovest, con residui presso Ponte Tresa e Figino che presentano mediamente delle concentrazioni più elevate di microinquinanti rispetto a Melide e Gandria. Rispetto alle stazioni di Ponte Tresa e Figino, presso Melide le acque risultano leggermente meno contaminate in particolare per la categoria dei Farmaci, mentre la concentrazione dei complessanti è simile a quella riscontrata a Ponte Tresa e Figino. Di fatto la tendenza illustrata nella Figura 4 conferma l'impatto dei maggiori tributari lungo questo flusso sull'inquinamento e suggerisce un influsso solo trascurabile della circolazione del lago sulla distribuzione dei composti nella colonna d'acqua. Le acque di Gandria si presentano mediamente meno contaminate, con un fattore che varia da 2 volte per i complessanti a 6 per i farmaci, rispetto alle acque del bacino di Ponte Tresa.


Per un confronto sommario dei valori ottenuti in rapporto a quelli di campagne precedenti, la Tabella 2 offre una panoramica su tutti i microinquinanti idrosolubili nelle acque del lago di Lugano ritrovati a oggi in almeno un'occasione (Schildknecht et al., 2009; Sacchi, 2011; CIPAIS, 2015; CIPAIS, 2018). In linea generale, si può notare per diversi farmaci una certa costanza con i valori passati, mentre nel caso di specifici principi attivi come la Carbamazepin, il Cetirizin e l'Ibuprofene i dati suggeriscono una diminuzione. Sempre per la categoria dei Farmaci, dalla Tabella 2 si deduce un'evoluzione discontinua nella presenza e concentrazione dei mezzi di contrasto radiologici, che in questa categoria rappresentano una classe di sostanze con concentrazioni tra le più elevate. Si tratta di prodotti che vengono somministrati per via vascolare a pazienti per procedere a diagnosi specifiche. A differenza della precedente campagna del 2017 nella quale si era rinvenuto la sostanza lopamidol in concentrazione maggiore, nel 2021 le concentrazioni dei mezzi di contrasto radiologici nel lago diminuiscono nell'ordine: Iohexol > Iomeprol > Iopamidol > Ioxithalaminsäure > Iopromid. Vanno sottolineate in particolare dal 2017 al 2021 la notevole diminuzione del composto lopamidol (di circa l'80%) e le basse concentrazioni di lopromid, molecola risultata predominante in studi precedenti (Sacchi, 2011). Le concentrazioni relativamente elevate e le dinamiche discontinue confermano l'opportunità di monitorare nel tempo con attenzione l'evoluzione di questa categoria di microinquinanti, particolarmente persistenti nell'ambiente (Borowska et al., 2015).

Sempre per la categoria dei Farmaci, la Tabella 2 mostra come il composto Lamotrigin, utilizzato per il trattamento dell'epilessia e dei disturbi bipolari, presenti un leggero aumento rispetto alla campagna precedente del 2017. È interessante infine notare i residui elevati di due sostanze ricercate per la prima volta in questa campagna. Si tratta del composto Metformin, utilizzato per il trattamento del diabete mellito di tipo 2 e del prodotto di degradazione della Metformin Guanylharnstoff, risulta essere la molecola della categoria Farmaci con le concentrazioni più elevate tra quelle ricercate. Una tendenza simile è stata ritrovata anche nel Bodensee in occasione del monitoraggio della Commissione internazionale per la protezione delle acque del Bodensee IGKB (IGKB 2020). La Metformin è risultata essere anche il residuo farmaceutico più presente per l'inquinamento di diversi fiumi al mondo (Wilkinson et al., 2021).

In modo simile a quanto osservato per certe sostanze della categoria dei Farmaci, anche il complessante EDTA (Figura 5), l'unica molecola di questa classe rinvenuta sia nell'attuale campagna sia nella campagna del 2017, mostra una tendenza alla diminuzione, quantificabile tra il 20 e il 40% rispetto alla campagna del 2017. Questa tendenza è più marcata nei bacini di Ponte Tresa (da 2'150 a 1'300 ng/L) e Figino (da 2'087 a 1'387 ng/L). Visto che l'EDTA viene trattenuto solo in minima parte dagli IDA non specificatamente attrezzati per i microinquinanti organici (European Union Risk assessment report Edetic Acid EDTA, 2004) queste osservazioni potrebbero essere riconducibili ai miglioramenti realizzati per la depurazione delle acque reflue scaricate nel bacino Sud (vedi anche capitolo 1), come l'installazione di impianti pilota con trattamento a carbone attivo in polvere presso l'IDA di Barbengo.

Figura 3 Somma delle sostanze rilevate per una determinata categoria – Farmaci, Complessanti, Dolcificanti, Benzotriazoli, PFAS – per i quattro diversi momenti di prelievo nel 2021 e per le due differenti profondità (Superficiale: colonna d'acqua 0-20 m. Profondo: 50 m, rispettivamente 40/45 m per il campione di Ponte Tresa); PT (Ponte Tresa); FI (Figino); ME (Melide); GA (Gandria).

Figura 4 Somma delle sostanze rilevate per una determinata categoria – Farmaci, Complessanti, Dolcificanti, Benzotriazoli, PFAS – in diversi luoghi di campionamento. Sono state considerate le medie dei risultati ottenuti a diverse profondità e per i quattro diversi momenti di prelievo. Le barre di errore indicano i relativi risultati minimi e massimi.

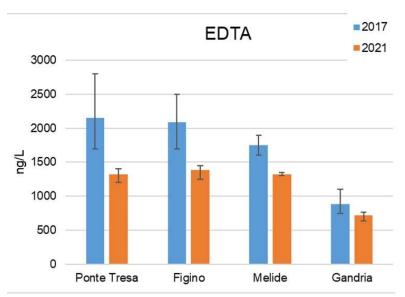
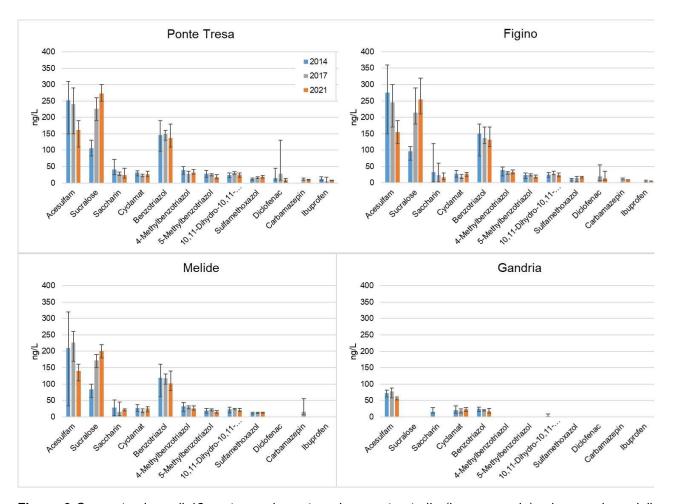
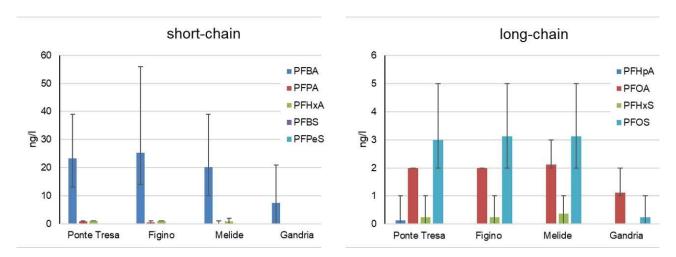



Figura 5 Concentrazione del complessante EDTA in occasione della campagna CIPAIS del 2017 (barre blu) e dell'attuale campagna 2021 (barre arancio). Sono considerate le medie degli 8 campioni analizzati in entrambe le occasioni per ogni punto di prelievo. Le barre di errore indicano i relativi risultati massimi e minimi.


Per ampliare l'orizzonte temporale del confronto, la Figura 6 raccoglie le concentrazioni di 12 sostanze già ricercate, oltre alla presente, anche nelle campagne CIPAIS del 2014 e del 2017. I risultati del 2021 supportano l'andamento di riduzione del dolcificante Acesulfame e l'aumento di Sucralosio per tutti i punti di prelievo, come già suggerito nel 2017. Questa osservazione è in accordo con l'andamento dei consumi di queste sostanze e alle relative previsioni dell'evoluzione dei residui nei laghi (Longrée et al., 2011). Altri microinquinanti raffigurati nella Figura 6 sembrano mostrare una lenta tendenza al ribasso, seppure nel contesto di una variabilità di singoli valori che non permette conclusioni robuste.

La campagna CIPAIS 2021 ha valutato per la prima volta il pacchetto esteso di composti PFAS (Figura 7) per un totale di 20 molecole, di cui 5 a catena corta (short-chain – PFBA, PFPA, PFHxA, PFBS, PFPeS) e 15 a catena lunga (long-chain – PFHpA, PFOA, PFHxS, PFOS, PFNA, PFDA, PFUnA, PFDoA, PFHpS, PFDS, PFOSA, HPFHpA, H2PFDA, H4PFUnA, H4PFOS). II 60% delle molecole a catena corta sono state quantificate (3 su 5: PFBA, PFPA, PFHxA), ma di queste PFBA (perfluorobutanoato) è risultato essere presente in concentrazioni significativamente superiori alle altre molecole (con una concentrazione massima di 56 ng/L). Per le molecole a catena lunga sono state rilevate il 27% di quelle ricercate (4 su 15: PFHpA, PFOA, PFHxS, PFOS). Di queste, PFOS (perfluorodecansolfonato) e PFOA (perfluoroottanoato) sono risultati presenti in concentrazioni chiaramente superiori alle altre molecole ricercate. Le analisi generali di PFAS mostrano la netta prevalenza della molecola PFBA che merita sicuramente una riflessione sulla sua origine e le possibili consequenze. PFAS a catena corta, come appunto PFBA, hanno un'elevata mobilità nell'ambiente sia nel suolo quanto nell'acqua, e sempre più vengono utilizzate per sostituire le molecole a catena lunga (Brendel et al., 2018). Diversamente a quanto osservato per i residui di PFAS nei pesci, sulla base delle concentrazioni molto più ridotte nelle acque non appaiono delle correlazioni tra acidi perfluoro carbossilici e solfonici o singole molecole degli PFAS (CIPAIS, 2016).

I risultati qui presentati confermano la rilevanza degli PFAS per la qualità delle acque e l'opportunità di proseguire con un monitoraggio più esteso. Per esempio, nuove molecole PFAS, come per esempio C6O4, vengono utilizzate per sostituire PFOS e PFOA. Concentrazioni rilevanti di C6O4 sono già state rilevate nelle acque sotterranee del Veneto, così come nelle acque del Po in Italia (ARPA Lombardia, 2019). Anche altri composti, come l'acido trifluoroacetico, possono essere rilevanti nell'ambiente acquatico e dovrebbero essere considerati nell'ambito di programmi di monitoraggio.

Figura 6 Concentrazione di 12 sostanze ricercate nel presente studio (barre arancio) e in occasione della campagna 2014 (barre grigio) e 2017 (barre blu). Sono considerate le medie degli 8 campioni analizzati in entrambe le occasioni per ogni punto di prelievo. Sono riportati unicamente i risultati corrispondenti a concentrazioni > 10 ng/l. Le barre di errore indicano i relativi risultati massimi e minimi.

Figura 7 Concentrazione delle sostanze perfluoroalchiliche PFAS a catena corta (short-chain) e a catena lunga (long-chain) rilevate nei diversi luoghi di campionamento. Sono considerate le medie degli 8 campioni analizzati in entrambe le occasioni per ogni punto di prelievo. Sono riportati unicamente i risultati per le molecole di PFAS rinvenute almeno una volta.

4.3 Qualità delle acque del lago e rischio per gli organismi

Per proporre un quadro completo sulle conoscenze attuali relative alla presenza di microinquinanti idrosolubili nelle acque del lago di Lugano, la Tabella 2 riassume tutti i dati disponibili ad oggi (Schildknecht et al., 2009; Sacchi, 2011; CIPAIS, 2015; CIPAIS, 2018). Complessivamente figurano nella Tabella 2 58 sostanze a fronte di un totale di oltre 250 microinquinanti leggermente o completamente idrosolubili ricercati.

Tabella 2

Tabella riassuntiva di tutti i microinquinanti idrosolubili rivelati a oggi nelle acque del Ceresio, comprendente i risultati dell'indagine CIPAIS del 2014 (CIPAIS, 2015), dell'indagine CIPAIS del 2017 (CIPAIS, 2018) e del presente studio, così come quelli delle referenze Schildknecht et al., 2009 per il Gruppo di lavoro acquedotto a lago (GAL) e Sacchi, 2011, entrambe relative alle acque presso Riva San Vitale. In tutti i casi sono indicati i singoli valori (in ng/l) minimi e massimi di diverse misurazioni, effettuate in momenti o profondità differenti. I valori sono confrontati con i criteri di qualità delle acque superficiali acuto (MAC) e cronico (AA) pubblicati dall'Oekotoxcentrum di Dübendorf (Götz et al., 2010; Oekotoxzentrum, 2022).

	Studio con anno di prelievo	GAL 2008- 2009	Sacchi 2010	CIPAIS 2014	CIPAIS 2018	CIPAIS 2021	Criterio di q (MAC) e cr	ualità acuto ronico (AA)
Sostanza	Categoria						MAC	AA
Benzotriazol	Benzotriazoli	112 - 203	93 - 330	17 - 190	18 - 170	12 - 180	160000	19000
4-Methylbenzotriazol	Benzotriazoli	29 - 40	n.a.	<10 – 50	<10 – 36	<10 - 41	430000	20000
5-Methylbenzotriazol	Benzotriazoli	n.a.	n.a.	<10 – 38	<10 – 28	<10 – 25	430000	20000
Atrazin	Fito / Biocidi	<5	2 - 5	<5	n.a.	n.a.		
Desethylterbuthylazin	Fito / Biocidi	n.a.	n.a.	<5 - 12	n.a.	n.a.		
DEET	Fito / Biocidi	<5 – 6	n.a.	<5 - 13	n.a.	n.a.	410000	88000
Mecoprop	Fito / Biocidi	n.a.	<3 – 17	<10	n.a.	n.a.	190000	3600
Simazin	Fito / Biocidi	<5 – 12	n.a.	<5	n.a.	n.a.		
Terbuthylazin	Fito / Biocidi	<5 – 7	n.a.	<5	n.a.	n.a.	1300	220
Terbutryn	Fito / Biocidi	<5	<0.03 - 1	<5	n.a.	n.a.	340	65
Atenolol	Farmaci	n.a.	<0.1 - 10	<10	n.a.	n.a.	330000	150000
Azithromycin	Farmaci	n.a.	n.a.	<10	<10	<10	180	19
Carbamazepin	Farmaci	<10 – 23	12 - 48	<10 – 12	<10 – 55	<10 - 11	2000000	2000
Cetirizin	Farmaci	n.a.	n.a.	n.a.	<10 – 24	<10		
Clarithromycin	Farmaci	n.a.	<0.3	<10	<10 – 12	<10	190	120
Dehydrato-Erythromycin A	Farmaci	n.a.	n.a.	<10	<10 – 21	<10		

Diclofenac	Farmaci	<10	<2 - 15	<10 – 45	<10 –130	<10-35		50
Gabapentin	Farmaci	n.a.	75 - 238	n.a.	<10 – 100	<10 – 63		
Gemfibrozil	Farmaci	<10 – 19	n.a.	<10 – 110	<10	<10		
Guanylharnstoff	Farmaci	n.a.	n.a.	n.a.	n.a.	<10-750		
Ibuprofen	Farmaci	<10 – 14	n.a.	<10 – 19	<10 – 17	<10	1700000	11
Lamotrigin	Farmaci	n.a.	n.a.	n.a.	<10 – 11	<10-21		
Metformin	Farmaci	n.a.	n.a.	n.a.	n.a.	100-300	640000	160000
Naproxen	Farmaci	<10	<4 - 12	<10	<10	<10	860000	1700
Oxazepam	Farmaci	n.a.	n.a.	n.a.	<10	<10		
Paracetamol	Farmaci	n.a.	n.a.	<10 – 13	<10	<10		
Roxithromycin	Farmaci	n.a.	n.a.	<10	<10	<10		
Sotalol	Farmaci	n.a.	<1 - 11	<10	n.a.	n.a		
Sulfamethoxazol	Farmaci	n.a.	<0.4 - 12	<10 – 15	<10 – 20	<10-23	2700	600
Sulfapyridin	Farmaci	n.a.	n.a.	<10 – 12	<10	<10-13		
Trimethoprim	Farmaci	n.a.	<0.3	<5	<5	<10	210000	120000
N-Acetyl-4- aminoantipyrin	Farmaci	n.a.	n.a.	<10 – 25	n.a.	n.a.		
10,11-Dihydro-10,11- dihydroxycarbamazepin	Farmaci	n.a.	n.a.	<10 – 31	<10 – 36	<10-31		100000
lopamidol	Farmaci	85 - 151	< 50	n.a.	13 - 510	<10-110		
lopromid	Farmaci	<10 – 24	133 - 548	n.a.	<10 – 42	<10-12		
lohexol	Farmaci	<10 – 17	<10	n.a.	<10 – 260	<10-450		
Iomeprol	Farmaci	n.a.	<50	n.a.	15 - 380	<10-400		
loxithalaminsäure	Farmaci	n.a.	n.a.	n.a.	<10 – 27	<10-19		
Acesulfam	Dolcificanti	n.a.	n.a.	33 - 360	58 - 300	52-190		
Cyclamat	Dolcificanti	n.a.	n.a.	11 - 38	11 - 27	<10-36		
Saccharin	Dolcificanti	n.a.	n.a.	<10 – 120	<10 – 60	<10-45		
Sucralose	Dolcificanti	n.a.	n.a.	<50 – 130	<50 – 290	<10-320		
NTA	Complessanti	<500 – 800	n.a.	n.a.	<500	<10	9800000	190000
EDTA	Complessanti	1900 - 2600	n.a.	n.a.	750 - 2800	590- 1500	12100000	2200000
Bromoform	IC alog. volatili	<50 - 60	n.a.	n.a.	n.a.	n.a.		
Perchlorethylen	IC alog. volatili	<50 – 130	n.a.	n.a.	n.a.	n.a.		

MTBE	Add. benzina	73 - 473	n.a.	n.a.	n.a.	n.a.		
ETBE	Add. benzina	<10 – 33	n.a.	n.a.	n.a.	n.a.		
Perfluorbutanoat	PFAS	n.a.	n.a.	n.a.	n.a.	<1 - 56		
Perfluorpentanoat	PFAS	n.a	n.a	n.a	n.a	<1-1		
Perfluorhexanoat	PFAS	n.a	n.a	n.a	n.a	<1-2		
Perfluorheptanoat	PFAS	n.a	n.a	n.a	n.a	<1-1		
Perfluoroctanoat	PFAS	<2-2	n.a	n.a	n.a	1-3		
Perfluorhexansulfonat	PFAS	n.a	n.a	n.a	n.a	<1-1		
Perfluoroctansulfonat	PFAS	<2-3	n.a	n.a	n.a	<1-5	36000	2
Estron	S. endocrine	<5	n.a.	n.a.	<0.1 – 0.3	n.a	Non proposto	3.6
4-iso-Nonylphenol	S. endocrine	n.a.	n.a.	n.a.	<25 – 45	n.a	3800	43
Bisphenol A	S. endocrine	<10 – 24	n.a.	n.a.	<5	n.a	53000	240

n.a.: non analizzato nel rispettivo studio

La Tabella 2 riporta anche, se disponibili, i criteri ecotossicologici più attuali per le acque, divisi in MAC-EQS e AA-EQS (sito web Oekotoxzentrum, 2022). Il superamento puntuale nel tempo di un valore MAC-EQS significa che eventuali danni agli organismi non possono essere esclusi durante le 24-96 ore seguenti, mentre i valori di AA-EQS corrispondono alle concentrazioni che per evitare problemi cronici a seguito di un'esposizione continua non devono essere superati mediamente durante l'arco dell'anno. Di fatto, gli AA-EQS rappresentano il riferimento più appropriato nel caso di residui di microinquinanti nel lago di Lugano.

Come già rinvenuto nelle campagne CIPAIS 2014 e 2017, la maggior parte dei valori riportati nella Tabella 2 sono lontani dalle soglie di pericolo acuto MAC-EQS. I valori AA-EQS per alcune sostanze sono invece prossimi alle concentrazioni effettivamente misurate. La Tabella 3 aggiorna allo stato attuale le concentrazioni medie per le sostanze con i residui più vicini ai valori AA-EQS, considerando le tre campagne di misurazioni promosse dalla CIPAIS. A differenza di quanto riportato in passato, dove nessun valore medio in nessuna zona del Ceresio risultava superiore ai rispettivi valori AA-EQS, i risultati per il PFOS, raccolti per la prima volta, mostrano concentrazioni comprese tra AA-EQS e il suo valore doppio. Questo dato aggiorna il giudizio sulla qualità delle acque, nei bacini di Ponte Tresa e Sud, da Buono a Moderato (Wittmer et al., 2014 a). I residui medi di PFOS nei bacini di Ponte Tresa e Sud del Ceresio (~3 ng/L) sono simili a quanto ritrovato in altri grandi laghi transnazionali come il Bodensee (con concentrazioni fino a 5 ng/L), nel Lago di Como e nel Lago Maggiore, con concentrazioni di PFOS < 2.5 – 3.3 ng/L (Mazzoni et al., 2019).

È opportuno menzionare che, negli ultimi anni, il valore AA-EQS dello PFOS è stato inasprito di ~ 100 volte, passando da 230 ng/L agli attuali 2 ng/L. Di fatto, allo stato del 2017 (ovvero dell'ultima campagna di monitoraggio CIPAIS sui residui di microinquinanti organici del Ceresio), con il valore AA-EQS di 230 ng/L, gli stessi risultati sui residui di PFOS avrebbero portato a giudicare la qualità delle acque come molto buona. Questo esempio mostra come le conoscenze e i riferimenti relativi ai valori soglia ecotossicologici possano evolvere nel tempo, determinando a parità di concentrazioni misurate un cambiamento nel giudizio della qualità delle acque. In occasione delle campagne

CIPAIS precedenti, sulla base della parametrizzazione e dei valori AA-EQS vigenti (Tabella 3), la sostanza determinante per il giudizio della qualità delle acque era risultata essere il Diclofenac. Per i farmaci Diclofenac, Ibuprofen e Azitromycin, la Tabella 3 suggerisce una generale diminuzione delle concentrazioni nel 2021, in linea con altri composti (vedi capitolo 4.2), forse grazie ai miglioramenti realizzati per la depurazione delle acque reflue (vedi anche capitolo 1). Questa conclusione deve essere interpretata al momento con cautela, in considerazione della possibile variabilità ambientale dei residui, per esempio influenzabile dalla degradazione fotolitica di composti quali il Diclofenac (Longrée et al., 2011). Come termine di confronto all'attuale situazione in Svizzera, è importante sottolineare i valori più restrittivi introdotti dall'Unione Europea con il D.Lgs. 172/2015 (recepimento della Direttiva 2013/39/UE) con la quale sono stati stabili nuovi Standard di Qualità Ambientale (SQA) nei corsi d'acqua per 12 sostanze appartenenti a diverse classi di utilizzo. Tra queste sostanze figura anche il PFOS, per il quale il valore medio annuo e la concentrazione massima ammissibile sono, rispettivamente, 0.65 ng/L e 36'000 ng/L.

Per il Lago di Lugano, solo i risultati nel tempo di ripetuti monitoraggi potranno fornire conferme robuste sull'efficacia dei miglioramenti nell'ambito della depurazione delle acque reflue.

Tabella 3

Tabella riassuntiva delle concentrazioni medie misurate in diverse zone del Ceresio per le sostanze più critiche dal punto di vista ecotossicologico. Sono indicati i dati in ng/l per l'indagine CIPAIS precedenti (CIPAIS, 2015; CIPAIS, 2018) e quelli del presente studio. I valori sono confrontati con i criteri di qualità delle acque superficiali AA pubblicati dall'Oekotoxzentrum di Dübendorf, allo stato del 2014, 2017, e 2021.

	Ponte Tresa	Figino	Melide	Gandria	AA-EQS
Diclofenac 2014	12 - 16	3 - 11	< LOQ	< LOQ	50
Diclofenac 2017	28	20	6 – 7	3 - 7	50
Diclofenac 2021	9	15	4 – 6	4 – 6	50
Ibuprofen 2014	9 - 10	2 - 5	< LOQ	< LOQ	300
lbuprofen 2017	4 – 6	3 – 5	1 – 4	1 – 3	11
lbuprofen 2021	2 – 4	1 – 4	< LOQ	< LOQ	11
Azitromycin 2014	< LOQ	< LOQ	< LOQ	< LOQ	90
Azitromycin 2017	4 – 6	4 – 5	2 - 4	< LOQ	19
Azitromycin 2021	< LOQ	< LOQ	< LOQ	< LOQ	19
PFOS 2021	3	3	3	< LOQ	2
Giudizio qualità delle acque 2014	Buone	Buone – Molto buone	Molto buone	Molto buone	
Giudizio qualità delle	Buone	Buone	Buone	Buone – Molto	
acque 2017				buone	
Giudizio qualità delle acque 2021	Mediocre	Mediocre	Mediocre	Buone	

Va ricordato infine che i giudizi espressi sulla qualità delle acque sono applicabili unicamente in riferimento agli inquinanti per cui è disponibile una valutazione ecotossicologica. Come si evince dalla Tabella 2, per molte delle sostanze rinvenute nel Lago Lugano questi valori non sono al momento disponibili. Particolare attenzione in questo contesto dovrebbe essere rivolta ai composti della categoria di PFAS, come per esempio il PFBA, ritrovato in concentrazioni particolarmente elevate.

5. Conclusioni

Lo studio presentato in questo rapporto amplia le conoscenze relative ai microinquinanti idrosolubili presenti nelle acque del Lago di Lugano, espandendo il monitoraggio iniziato con le precedenti campagne CIPAIS sul tema dei microinquinanti idrosolubili. Sono state analizzate 76 sostanze in zone del lago, profondità e momenti di prelievo differenti. Rispetto alle due precedenti campagne (2014, 2017), la parametrizzazione è stata aggiornata includendo per la prima volta un esteso pacchetto con diversi composti della famiglia dei perfluoroalchilici (PFAS). Si tratta di sostanze ancora poco regolamentate e molto persistenti nell'ambiente.

I risultati confermano l'aumento dei residui di microinquinanti lungo l'asse di deflusso del lago da est verso ovest, mostrando una dipendenza solo secondaria sia del momento sia della profondità di prelievo. Le osservazioni raccolte sono in linea con la struttura morfologica e idrologica del lago e con i risultati ottenuti nell'ambito delle ricerche CIPAIS 2013, 2014 e 2017. Si confermano le tendenze già registrate nella campagna del 2017 all'aumento del Sucralosio e rispettivamente alla diminuzione dell'Acesulfame. Mentre i residui di singoli mezzi di contrasto iodurati suggeriscono delle tendenze discontinue, le concentrazioni di diversi altri farmaci appaiono in diminuzione, così come la presenza del complessante EDTA. Seppure al momento sia difficile trarre conclusioni generali a riguardo, queste osservazioni potrebbero essere riconducibili ai miglioramenti già realizzati per la depurazione delle acque reflue scaricate nel bacino Sud, come per esempio l'installazione di impianti pilota con trattamento a carbone attivo in polvere presso l'IDA di Barbengo. Sarà interessante verificare nel tempo la robustezza di queste tendenza positiva, anche sulla base degli ulteriori interventi previsti nell'ambito della depurazione delle acque reflue.

Sulla base dei risultati e delle attuali conoscenze ecotossicologiche, la qualità delle acque del bacino nord può essere giudicata buona, mentre le crescenti concentrazioni verso ovest portano a classificare le acque del bacino sud come mediocri. Questa nuova classificazione è determinata dal PFOS, un composto fortemente limitato dal 2011 in Svizzera dall'Ordinanza sulla riduzione dei rischi inerenti i prodotti chimici (ORRPChim), che ne dovrebbe avere ridotto le emissioni diffuse. D'altro canto, esistono molte altre molecole problematiche appartenenti alla categoria degli PFAS, non ancora o solo poco regolate alla fonte e per le quali sono assenti valori di riferimento ecotossicologici (Fabrello et al., 2021).

Più in generale, i risultati presentati confermano la necessità di proseguire le attività di monitoraggio dei microinquinanti nell'ambiente permettendo, accanto al costante aggiornamento delle valutazioni ecotossicologiche, di determinare e seguire nel tempo i maggiori fattori di stress chimico e le loro eventuali ripercussioni.

6. Bibliografia

Agenzia Regionale per la Protezione dell'Ambiente Lombardia. Il monitoraggio delle sostanze perfluoroalchiliche in Lombardia – Anno 2018. 2019.

Borowska E., Felis E., Zabczynski S. Degradation of Iodinated Contrast Media in Aquatic Environment by Means of UV, UV/TiO₂ Process, and by Activated Sludge. Water Air Soil Pollut. 2015. 226(5): 151 (1-12).

Brendel S., Fetter E., Staude C., Vierke L., Biegel-Engler A. 2018. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe 20: 9 (2018).

Buck R.C., Franklin J., Berger U., Conder J.M., Cousins I.T., de Voogt P., Astrup Jensen A., Kannan K., Mabury S.A e van Leeuwenkk S.P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 7(2011), 513-541

Buser A., Morf L. Substance flow analysis for Switzerland – Perfluorinated surfactants perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA). Environmental studies no. 0922, Ufficio federale dell'ambiente UFAM, 2009. 1-144.

Consiglio federale. Piano d'azione per la riduzione del rischio e l'utilizzo sostenibile dei prodotti fitosanitari. Rapporto del Consiglio federale, 2017.

European Union Risk Assessment Report Edetic Acid EDTA, 2004. European Commission Joint Research Centre.

Fabrello J., Targhetta F., Ciscato M., Asnicar M., Bernardini I., Milan M., Patarnello T., Marin M.G., Matozzo V. 2021. First Evidence of In vitro Effects of C6O4 – A Substitute of PFOA-On Haemocytes of the Clam *Ruditapes philippinarum*. Toxics. 19;9(8):191

Götz C., Mettler S., Vermeirssen E. 2010. Modélisation du flux de micropollants provenant des rejets de l'èpuration des eaux usées – Bassins du Léman et du Rhône aval. Studio su mandato della Commission internationale pour la protection des eaux du Léman – CIPEL : 1-76.

Houde M., De Silva A., Muir D., Letcher R. Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ. Sci. Technol. 45 (2011), 7962-7973

IGKB. Internationale Gewässerschutzkommission für den Bodensee. Jahresbericht der Internationalen Gewässerschutzkommission für den Bodensee: Limnologischer Zustand des Bodensees Nr. 43 (2018-2019)

Legge federale sulla protezione delle acque (LPAc) del 24 gennaio 1991, Stato 1° gennaio 2022.

Longrée P., Singer H., Moschet C., Götz C., Schärer M., Keusen M. 2011. Organische Mikroverunreinigungen im Bodensee – Analyse und Bewertung der Situation in See und Einzugsgebiet. GWA. 7: 495-505.

Loos R., Wollgast J., Huber T., Hanke G. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA) and nonylphenol and ist carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem. 2007; 387:1469-78

Mazzoni M., Buffo A., Cappelli F., Pascariello S., Polesello S., Valsecchi S., Volta P., Bettinetti R. Perfluoroalkyl acids in fish of Italian deep lakes: Environmental and human risk assessment. Science of the Total Environment. 653 (2019) 351-358.

Oekotoxzentrum 2022, Proposals for Acute and Chronic Quality Standards https://www.ecotoxcentre.ch/expert-service/quality-standards/proposals-for-acute-and-chronic-quality-standards/

Rapporto CIPAIS 2013. Lago di Lugano: indagine sulle sostanze pericolose. Microinquinanti in otto immissari.

Rapporto CIPAIS 2014. Lago di Lugano: indagine sulle sostanze pericolose. Microinquinanti nelle acque del lago.

Rapporto CIPAIS 2015. Lago di Lugano: indagine sulle sostanze pericolose. Contaminanti organici persistenti nella fauna ittica

Rapporto CIPAIS 2017. Lago di Lugano: indagine sulle sostanze pericolose. Microinquinanti nelle acque del lago.

Rapporto CIPAIS 2018. Lago di Lugano: Ricerca e monitoraggio di sostanze pericolose nella fauna ittica

Reinhardt M. Perfluorierte Chemikalien im Grundwasser. GWA 11/2010. 2010, 967-978.

Sacchi L. Le cycle anthropique de l'eau dans la région de Mendrisio (TI) : quelles perspectives pour la ressource en eau ? Maîtrise universitaire en Sciences en Géosciences de l'Environnement, Université de Lausanne. 2011. 1-124

Schildknecht A., Kèster O., Bosshart U. Analisi dell'acqua presso la futura captazione a lago di Rive San Vitale – Campagna di misure 2007 – marzo 2009. Gruppo di lavoro acquedotto a lago, Mendrisiotto. 2009.

Spycher S., Mangold S., Doppler T., Junghans M., Wittmer I., Stamm C., Singer H. Pesticide risks in small streams – how to get as close as possible to the stress imposed on aquatic organisms. Environ. Sci. Technol. 52 (2018) 4526-4535.

Sun H.; Gerecke, A.C.; Giger, W. e Alder, A.C. Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland. Environmental Pollution 159 (2011), 654-662.

Wilkinson et al. Pharmaceutical pollution of the world's rivers. 2022. PNAS Vol. 119 No. 8 e2113947119

a-Wittmer, I., Junghans, M., Singer, H., Stamm, C. 2014. Mikroverunreinigungen Beurteilungskonzept für organische Spurenstoffe aus diffusen Einträgen. Studio commissionato dall'UFAM. Eawag, Dübendorf.

b-Wittmer I., Moschert Ch., Simovic J., Singer H., Stamm C., Hollender J., Junghans M. 2014. Ueber 100 Pestizide in Fliessgewässern – Programm NAWA Spez zeigt die hohe Pestizid-Belastung der Schweizer Fliessgewässer auf. Aqua & Gas, 3: 32-43.

Appendice

<u>Tabella 4</u>: Microinquinanti ricercati nel presente studio (76 sostanze). Sono indicati il nome della sostanza, la categoria di appartenenza (Bz: Benzotriazoli, Co: Complessanti, Fa: Farmaci, PFAS: Sostanze Perfluoro Alchiliche e Do: Dolcificanti) e il limite di quantificazione analitico in ng/l (LQ). Le sostanze in grassetto (32 sostanze) sono state ritrovate almeno una volta in concentrazioni maggiori del limite di rivelazione, valutabile in circa 3 volte inferiore al LQ.

Cat	Sostanza	LQ	Cat	Sostanza	LQ	Cat	Sostanza	LQ	Cat	Sostanza	LQ
Bz	Benzotriazol	10	Fa	Clofibrinsäure	10	Fa	lopamidol	10	Fa	Sulfamerazin	10
Bz	4-Methylbenzotriazol	10	Fa	Dehydrato-Erythromycin A	10	Fa	lopromid	10	Fa	Sulfamethoxazol	10
Bz	5-Methylbenzotriazol	10	Fa	Diazepam	10	Fa	Iotalaminsäure	10	Fa	Sulfapyridin	10
Co	NTA	500	Fa	Diclofenac	10	Fa	loxaglinsäure	10	Fa	Trimethoprim	5
Co	EDTA	500	Fa	Etofibrat	10	Fa	loxithalaminsäure	10	PFAS	Perfluorbutanoat	1
Co	DTPA	1000	Fa	Fenofibrat	10	Fa	Ketoprofen	10	PFAS	Perfluorpentanoat	1
Со	PDTA	1000	Fa	Fenofibrinsäure	10	Fa	Lamotrigin	10	PFAS	Perfluorhexanoat	1
Со	ADA	1000	Fa	Fenoprofen	10	Fa	Metformin	10	PFAS	Perfluorheptanoat	1
Со	MGDA	1000	Fa	Gabapentin	10	Fa	Naproxen	10	PFAS	Perfluoroctanoat	1
Fa	10.11-Dihydro-10.11-di hydroxycarbamazepin	10	Fa	Gemfibrozil	10	Fa	Oxazepam	10	PFAS	Perfluornonanoat	1
Fa	Amidotrizoesäure	10	Fa	Guanylharnstoff	50	Fa	Paracetamol	10	PFAS	Perfluordecanoat	1
Fa	Azithromycin	10	Fa	Hydrochlorothiazid	10	Fa	Pentoxifyllin	10	PFAS	Perfluorundecanoat	1
Fa	Bezafibrat	10	Fa	Ibuprofen	10	Fa	Primidon	10	PFAS	Perfluordodecanoat	1
Fa	Carbamazepin	10	Fa	Indomethacin	10	Fa	Roxithromycin	10	PFAS	Perfluorbutansulfonat	1
Fa	Cetirizin	10	Fa	lohexol	10	Fa	Sulfadiazin	10	PFAS	Perfluorpentansulfonat	1
Fa	Clarithromycin	10	Fa	Iomeprol	10	Fa	Sulfadimidin	10	PFAS	Perfluorhexansulfonat	1

Cat	Sostanza	LQ	Cat	Sostanza	LQ
PFAS	Perfluorheptansulfonat	1	Do	Acesulfam	10
PFAS	Perfluoroctansulfonat	1	Do	Cyclamat	10
PFAS	Perfluordecansulfonat	1	Do	Saccharin	10
PFAS	Perfluoroctansulfonsäurea mid	1	Do	Sucralose	50
PFAS	7H-Dodecafluorheptanoat	1			
PFAS	2H,2H-Perfluordecanoat	1			
PFAS	2H,2H,3H,3H- Perfluorundecanoat	1			
PFAS	1H,1H,2H,2H- Perfluoroctansulfonat	1			

Tabella 5: Sostanze rivelate presso la stazione di Ponte Tresa in occasione delle quattro campagne di misura. I valori, espressi in ng/l, sono confrontati con i criteri di qualità delle acque superficiali MAC e AA pubblicati dall'Oekotoxzentrum di Dübendorf (Oekotoxzentrum, 2022). Eventuali superamenti di un valore MAC e/o AA sono evidenziati in grassetto e sottolineati.

Punto prelievo	e Tresa acqua 0-20 n	n		Pont Campi		Criterio di qualità acuto (MAC) e cronico (AA)				
Sostanza	Camp. 1	Camp. 2	Camp. 3	Camp. 4	Camp. 1	Camp. 2	Camp. 3	Camp. 4	MAC	AA
Benzotriazol	130	150	110	120	130	180	140	130	160000	19000
4-Methylbenzotriazol	28	35	32	30	30	41	33	27	430000	20000
5-Methylbenzotriazol	19	20	14	12	19	25	21	15	430000	20000
EDTA	1200	1400	1400	1400	1200	1300	1300	1400	12000000	2200000
10,11-Dihydro-10,11- dihydroxycarbamazepin	30	18	24	26	31	21	29	28	att. non possibile	100000
Amidotrizoesäure	12	n.d	n.d	n.d	13	12	n.d	12	-	-
Carbamazepin	11	n.d	8	9	10	n.d	10	10	2000000	2000
Diclofenac	7	7	3	13	12	10	11	11	non considerato	50
Gabapentin	60	44	33	49	55	51	46	63	-	-
Guanylharnstoff	n.d	n.d	61	n.d	n.d	n.d	n.d	n.d	att. non possibile	att. non possibile
Ibuprofen	9	n.d	n.d	n.d	7	n.d	n.d	n.d	1700000	11
lohexol	450	340	210	340	420	410	380	400	-	-
Iomeprol	350	330	180	320	320	400	280	330	att. non possibile	att. non possibile
lopamidol	94	58	34	47	98	88	85	95	att. non possibile	att. non possibile

lopromid	12	n.d	n.d	n.d	12	n.d	n.d	12	att. non possibile	att. non possibile
loxithalaminsäure	19	12	n.d	15	19	18	17	18	-	-
Lamotrigin	16	15	19	21	19	16	19	20	-	-
Metformin	240	240	260	200	260	260	290	210	640000	160000
Naproxen	n.d	n.d	n.d	n.d	n.d	n.d	n.d	5	860000	1700
Oxazepam	8	n.d	3	n.d	6	n.d	6	n.d	-	-
Sulfamethoxazol	18	19	15	23	18	18	17	19	2700	600
Sulfapyridin	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Trimethoprim	n.d	n.d	n.d	n.d	n.d	5	n.d	n.d	210000	120000
Perfluorbutanoat	31	17	13	39	27	18	18	24	-	-
Perfluorpentanoat	1	n.d	1	1	1	1	1	1	-	-
Perfluorhexanoat	1	1	1	1	1	1	1	1	-	-
Perfluorheptanoat	n.d	n.d	n.d	n.d	1	n.d	n.d	n.d	-	-
Perfluoroctanoat	2	2	2	2	2	2	2	2	-	-
Perfluorhexansulfonat	1	n.d	n.d	n.d	1	n.d	n.d	n.d	-	-
Perfluoroctansulfonat	<u>3</u>	<u>3</u>	2	<u>3</u>	<u>3</u>	2	<u>3</u>	<u>5</u>	36000	2
Acesulfam	190	140	110	120	190	180	180	180	-	-
Cyclamat	36	30	33	26	27	20	24	19	-	-
Saccharin	45	16	30	25	19	15	20	17	-	-
Sucralose	290	290	290	300	260	260	250	250	-	-
No. sostanze rilevate	27	21	26	23	28	23	24	25		
	1				ļ					

Tabella 6: Sostanze rivelate presso la stazione di Figino in occasione delle quattro campagne di misurazioni. I valori, espressi in ng/l, sono confrontati con i criteri di qualità delle acque superficiali MAC e AA pubblicati dall'Oekotoxcentrum di Dübendorf (Oekotoxzentrum, 2022). Eventuali superamenti di un valore MAC e/o AA sono evidenziati in grassetto e sottolineati.

Punto prelievo			gino acqua 0-20 n	1		Fi Campi	Criterio di qualità acuto (MAC) e cronico (AA)			
Sostanza	Camp. 1	Camp. 2	Camp. 3	Camp. 4	Camp. 1	Camp. 2	Camp. 3	Camp. 4	MAC	AA
Benzotriazol	120	150	110	120	120	170	120	110	160000	19000
4-Methylbenzotriazol	28	38	35	30	27	39	28	25	430000	20000
5-Methylbenzotriazol	19	20	15	13	18	24	19	13	430000	20000
EDTA	1200	1500	1400	1500	1300	1400	1400	1400	12000000	2200000
10,11-Dihydro-10,11- dihydroxycarbamazepin	30	18	24	25	25	19	27	24	att. non possibile	100000
Amidotrizoesäure	11	n.d	n.d	n.d	10	11	n.d	n.d	-	-
Carbamazepin	10	n.d	9	9	10	n.d	9	9	2000000	2000
Diclofenac	10	9	11	27	11	35	8	6	non considerato	50
Gabapentin	54	44	30	54	51	48	44	52	-	-
Guanylharnstoff	85	n.d	69	n.d	750	n.d	n.d	n.d	att. non possibile	att. non possibile
Ibuprofen	6	n.d	n.d	n.d	6	n.d	n.d	n.d	1700000	11
Iohexol	400	350	240	340	310	350	310	280	-	-
Iomeprol	310	340	200	330	250	280	230	230	att. non possibile	att. non possibile
Iopamidol	99	50	36	57	100	93	91	100	att. non possibile	att. non possibile

lopromid	12	n.d	n.d	n.d	12	n.d	n.d	n.d	att. non possibile	att. non possibile
loxithalaminsäure	18	14	11	14	14	15	14	12		
Lamotrigin	16	17	19	19	15	15	18	17	-	-
Naproxen	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Metformin	230	250	270	210	230	260	300	210	640000	160000
Oxazepam	7	n.d	3	n.d	6	n.d	n.d	n.d	-	-
Sulfamethoxazol	18	20	19	23	15	16	17	16	2700	600
Sulfapyridin	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Trimethoprim	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Perfluorbutanoat	25	14	15	56	23	19	17	34	-	-
Perfluorpentanoat	1	n.d	1	1	n.d	1	n.d	n.d	-	-
Perfluorhexanoat	1	1	1	1	1	1	1	1	-	-
Perfluorheptanoat	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Perfluoroctanoat	2	2	2	2	2	2	2	2	-	-
Perfluorhexansulfonat	1	n.d	n.d	n.d	1	n.d	n.d	n.d	-	-
Perfluoroctansulfonat	<u>3</u>	2	2	<u>3</u>	<u>4</u>	<u>3</u>	<u>3</u>	<u>5</u>	36000	2
Acesulfam	190	120	120	130	180	160	180	160	-	-
Cyclamat	28	29	32	23	30	20	n.d	n.d	-	-
Saccharin	15	17	22	30	14	n.d	10	11	-	-
Sucralose	250	320	290	310	210	220	230	210	-	-
No. sostanze rilevate	30	22	26	24	29	23	22	22		
					<u> </u>					

Tabella 7: Sostanze rivelate presso la stazione di Melide in occasione delle quattro campagne di misurazioni. I valori, espressi in ng/l, sono confrontati con i criteri di qualità delle acque superficiali MAC e AA pubblicati dall'Oekotoxcentrum di Dübendorf (Oekotoxzentrum, 2022). Eventuali superamenti di un valore MAC e/o AA sono evidenziati in grassetto e sottolineati.

Punto prelievo			elide acqua 0-20 n	1		Me Campi	Criterio di qualità acuto (MAC) e cronico (AA)			
Sostanza	Camp. 1	Camp. 2	Camp. 3	Camp. 4	Camp. 1	Camp. 2	Camp. 3	Camp. 4	MAC	AA
Benzotriazol	94	140	83	80	93	130	98	99	160000	19000
4-Methylbenzotriazol	23	33	21	20	24	32	25	23	430000	20000
5-Methylbenzotriazol	15	19	11	n.d	16	19	16	11	430000	20000
EDTA	1200	1300	1200	1200	1400	1400	1400	1500	12000000	2200000
10,11-Dihydro-10,11- dihydroxycarbamazepin	23	17	17	18	25	18	24	22	att. non possibile	100000
Amidotrizoesäure	7	n.d	n.d	n.d	7	n.d	n.d	n.d	-	-
Carbamazepin	8	n.d	6	6	8	n.d	n.d	9	2000000	2000
Diclofenac	n.d	30	n.d	n.d	n.d	n.d	n.d	n.d	non considerato	50
Gabapentin	47	37	29	39	48	43	39	56	-	-
Guanylharnstoff	n.d	n.d	63	81	86	n.d	n.d	n.d	att. non possibile	att. non possibile
Ibuprofen	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Iohexol	220	170	150	160	200	230	190	190	-	-
Iomeprol	170	160	110	130	160	190	150	160	att. non possibile	att. non possibile
lopamidol	83	47	36	46	110	86	90	99	att. non possibile	att. non possibile

lopromid	n.d	n.d	n.d	n.d	12	n.d	n.d	n.d	att. non possibile	att. non possibile
loxithalaminsäure	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Lamotrigin	14	11	13	14	13	12	16	14	-	-
Metformin	220	230	270	180	220	240	280	200	640000	160000
Naproxen	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Oxazapem	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Sulfamethoxazol	11	11	n.d	n.d	12	n.d	12	14	2700	600
Sulfapyridin	n.d	n.d	n.d	n.d	n.d	13	n.d	n.d	-	-
Trimethoprim	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Perfluorbutanoat	18	12	10	39	23	12	21	26	-	-
Perfluorpentanoat	n.d	n.d	n.d	n.d	n.d	n.d	1	n.d	-	-
Perfluorhexanoat	n.d	1	n.d	1	1	1	2	1	-	-
Perfluorheptanoat	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Perfluoroctanoat	2	2	2	2	2	2	3	2	-	-
Perfluorhexansulfonat	1	n.d	n.d	n.d	1	n.d	1	n.d	-	-
Perfluoroctansulfonat	<u>3</u>	2	2	<u>3</u>	<u>3</u>	<u>3</u>	<u>5</u>	<u>4</u>	36000	2
Acesulfam	150	120	110	110	160	150	160	160	-	-
Cyclamat	30	29	31	22	26	24	15	n.d	-	-
Saccharin	23	18	24	20	n.d	n.d	n.d	n.d	-	-
Sucralose	190	210	210	190	200	220	200	180	-	-
No. sostanze rilevate	22	21	20	20	24	19	21	19		

Tabella 8: Sostanze rivelate presso la stazione di Gandria in occasione delle quattro campagne di misurazioni. I valori, espressi in ng/l, sono confrontati con i criteri di qualità delle acque superficiali MAC e AA pubblicati dall'Oekotoxcentrum di Dübendrof (Oekotoxzentrum, 2022). Eventuali superamenti di un valore MAC e/o AA sono evidenziati in grassetto e sottolineati.

Punto prelievo			ndria acqua 0-20 n	1		Ga Campi	Criterio di qualità acuto (MAC) e cronico (AA)			
Sostanza	Camp. 1	Camp. 2	Camp. 3	Camp. 4	Camp. 1	Camp. 2	Camp. 3	Camp. 4	MAC	AA
Benzotriazol	15	22	12	13	14	26	15	16	160000	19000
4-Methylbenzotriazol	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
5-Methylbenzotriazol	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
EDTA	590	650	760	740	690	750	780	800	12000000	2200000
10,11-Dihydro-10,11- dihydroxycarbamazepin	n.d	5	3	6	n.d	5	8	6	att. non possibile	100000
Amidotrizoesäure	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Carbamazepin	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Diclofenac	n.d	30	n.d	n.d	n.d	n.d	n.d	n.d	non considerato	50
Gabapentin	7	8	7	9	8	9	9	12	-	-
Guanylharnstoff	67	n.d	n.d	n.d	n.d	n.d	n.d	n.d	att. non possibile	att. non possibile
Ibuprofen	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
Iohexol	12	n.d	n.d	n.d	10	n.d	n.d	n.d	-	-
Iomeprol	13	16	n.d	n.d	12	11	n.d	n.d	att. non possibile	att. non possibile
Iopamidol	n.d	n.d	n.d	n.d	10	n.d	n.d	n.d	att. non possibile	att. non possibile

Iopromid	n.d									
loxithalaminsäure	n.d									
Lamotrigin	n.d									
Metformin	120	140	170	120	110	120	140	100	640000	160000
Naproxen	n.d									
Oxazepem	n.d									
Sulfamethoxazol	n.d									
Sulfapyridin	n.d									
Trimethoprim	n.d									
Perfluorbutanoat	21	2	n.d	10	9	3	n.d	15	-	-
Perfluorpentanoat	n.d									
Perfluorhexanoat	n.d									
Perfluorheptanoat	n.d									
Perfluoroctanoat	1	1	1	1	1	2	1	1	-	-
Perfluorhexansulfonat	n.d									
Perfluoroctansulfonat	n.d	n.d	n.d	n.d	1	1	n.d	n.d	36000	2
Acesulfam	58	52	53	59	60	54	58	57	-	-
Cyclamat	23	23	27	28	22	21	22	17	-	-
Saccharin	n.d	10	13	11	n.d	n.d	n.d	n.d	-	-
Sucralose	n.d	n.d	n.d	57	n.d	n.d	n.d	n.d	-	-
No. sostanze rilevate	11	12	9	11	12	11	8	9		
l										